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ABSTRACT

Diffraction theory is used to formulate the H-plane radiation pattern of a
horn antenna. Excellent agreeseni between computed and measured patterns is
achieved by considering contributions from both the principal H-plane and E-
edge diffractions.

The pattern is computed by superposition of verious diffracted rays which
are described by wedge diffraction as given in Appendix A. This technigue is
demonstrated to be accurste and practical without employing aperture integra-
tion techniques.
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THE H-PLANE RADIATION PATTERN OF HORN ANTENNAS

L INTRODUCTION

The overall radiation pattern in the E-plane of a horn antenna
has been successfully calculated[l] by using diffraction theory (in Ap-
pendix A) developed by Sommerfeld and Pauli, The techniques employ-
ed are successive evaluation of diffracted fields at various wedges and
algebraic superposition of the various fields to form the total pattern.
In this report the same techniques are employed to predict the radiation
patterns in the H-plane of a horn antenna,

The excitation in the H-plane of the anternas must be treated
differently from that in the E-plane; fcr the H-plane the primary source
of radiation is the two plane waves (shown in Fig, 1) illuminating wedges
A and B. The diffracted waves at A and B can be solved by Pauli's
solutions, But interactions between the diffracted waves cannot be
described accurately without including the higher-order terms of Eq.
(A-3) given by Pauli in Appendn A, This limitation occurs for wide-
angle wedges at A and B in which the distance between A and B is less
than one wavelength. Instead of considering the higher-order terms in
Pauli's solution, a new diffraction coefficient is developed at the end of
Appendix A for this purpose.

In 1962, Kinber{2] used mode theory to solve the propagaticn modes
inside the antenna horn and the solutions were used for illumination inten-
sities in both E- and H-planes. In our present problem the sclutions of
mode theory are avoided by simply evaluating the diffracted waves at A
and B, This makes possible a u:nique description of the problem by dif-
fraction theory. In 1963, diffraction theory Lad been used by Peters and
Rudduck{3] to study radiation mechanisms in the H-plane of a horn
antenna., Experimentally they showed how the diffracted fields from E-
edges (i.e., edges of the tw> horn walls which are perpendicular to the E-
fields) can be eliminated from the principal H-plane pattern by applying
RAM(Radar Absorber Matarialsj to the horn edges. Analytically, Ohoal4]
used diffraction theory in the same year to compute the H-plane pattern of
a corner reflector excited by a dipole source. No completely computed
pattern is given, but excellent agreement is confirmed with measured
patterna, It was point=d cut that disagreement in the back-lobe region
results from neglecting the diffracted fields from E-edges, In view of the




Fig. l. Two component-plane-waves in the H-plane of
a waveguide supporting TE;¢ mode.

significant contribution from the E-edge diffracted fields, we shall in-
clude this in the final H-plane patterns. To show the accuracy of pre-
dictions by diffracticn theory, the problem will be formulated to com-
pute a complete pattern which can be easily compared with experimental
results.

1, RADIATION MECHANISMS

Propagation of electromagnetic waves inside a rectangular wave-
guide supporting the TEjp mode can be illustrated[5] by « simple physical
picture of plane waves. The H-plane (i.e., the principal pi~ne to which
the H-field is parallzl) of a horn artenna fed by the waveguidz is shown in
Fig. 1. The dotted lines represent three equiphase planes of the two




compenent-plane-waves, The arrowed solid lines represent the ray
patias of the propagating TEjy mode. The purpose here is to investigate
the radiation characteristics of the horn antenna excited by the guide at
the throat AB.

The problem is a two-d.meneional one in the principal H-plane
of the antenna., The geometry skown in Fig, 1l is symmetrical with
respact to 6= 0, and this property of symmetry is used to simplify
the following discussions. By .he diffraction theory reviewed in
Appendix A, two wedges, A and B, at the joint between the guide and
the horn are said[6] to be illuminated by the incident plane waves,
Cylindrical waves are diffracted from A and B; the diffracted rays from
A are shown in Fig. 2. Each of the diffracted waves from A and B
illuminates the opposite wedge and causes higher-order diffractions,
This process of interaction between A and B continues indefinitely with
successively decreasing illumination intensities, which are denoted
coupling coefficients, The coupling coefficient between A and B can be
formulated in closed form to obtain the resultant waves diffracted from
A and B,
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Fig., 2, Wedge A illuminated by one of the component-
plane-waves in the guide,




The total diffracted waves may be divided intc two portions.
Consider wedge A in Fig. 3; the diffracted rays in the region éAB
are reflected back into the guide while those in the region é:AB pro-

pagate forward to the horn. The former portion is responsible for

AF=Bth" z‘p“
AQ=8Q=p,

[GQF x 26,

AB=a,

FG=b =¢, +2p,3in b

Fig, 3. The diffracted waves from wedge A and the two
image-waves from Images 1 and 2,

mismatch beiween the guide and the horn. The latter portion may further
be divided ini» several regions. In the region E:AG, four successive
wavefronts are shown in solid curves to represent the portion of the wave
which propagates directly to the far-field zone, The other portion {shown
in dotted curves) is reflected by the wall BG. The reflected portion can
be represented by the image formed by A, The image is shown at point
1; also only the portion shov-a in solid curves propagates to the far-field.
The portion of the image-wave shown by dotted curves from point 1 is
reflected by the wall AF, and a second image is formed at point 2, The
last portion of the diffracted wave from A is now totally radiated to the
far-field zone by the horn antenna. By the property of symmetry, two
other symmetrical images can be constructed for the diffracted waves
from wedge B, Consequently, four images formed by A and B can be
constructed and all together six segments of cylindrical waves are




radiated from the interior of the antenna. Figure 4 shows the three
segments frorn the lower half of the antenna. The discontinuities of
the segmented cylindrical waves are all conpensated by introducing
higher-order diffractions.,

BF zp,
Flzp‘ Also,
F2=p2 A2za

2
LaBF=LBAG: T -6, -y
LFAG=26, -y, +y,,

Fig., 4. Geometry of the lower-wall image-waves.

As the diffracted waves from A and B and their image-waves pro-
pagate outward, the wedges F and G are illuminated by these waves,
As a consequence, more diffracted waves are induced at F and G which
contribute to the total radiation pattern. In Fig, 3, F and G are shown
illuminated by a ray from image 1 and A, respectively. If all possible
iliuminaticns are properly taken into account, the resultant diffraction
at F and G can be formulated. The diffracted waves at F and G also
illuminate each other and a closed-form interaction can be obtained, The
images formed in the horn walls by F and G are formulated in Appendix

B.




The mechanisms of radiation of the horn antenna have been ex-
pressed in terms of diffraction theory., The total radiation pattern
is the superposition of the four diffracted waves from wedges A, E,
¥, and G and all the image-waves formed in the horn walls, It has
been shown[3] that the diffracted fields from E-plane edges of the horn
also contribute to the principal H-plane pattern., Thie contribution is
also formulated in the following section,

. FORMULATION OF SOLUTION

The two plane waves illuminating A and B in Fig. 1 are in phase
and equal in magnitude. The distance between A and B is denoted a,
and the incident angle can be obtained from Fig., 2 as

(1) ¥ = cos —

-1
sin _E_ R
(Zao)

The direction of field-point referred to wedge A is

{2) =n +6,

Ya

The wedge angle 7 - 831 shown in Fig, 2 is set equal to (2-np)m, resulting
in the value of ny given by

e
H
(3) nA—l+_t;_ .

If the illumirating plane waves are assumed to have unit intensity, the
solutions of diffracted waves from wedge A can be obtained from Eq.
(A-4) as

I— /n-@ +0 }-‘
(4) DAg(e) = Kmt [KAZ - cos \—-;i—))

~

-1
- {KAZ -~ cos (M)} ,
"A




Kay =n,-} sin (-
Al nA Stn(nA)

and

KAZ —cos{ )

where the cylindrical wave factor

(2nkR)"? Exp, [ j (.Z-+ kR)]

to the far-field point is suppressed because only angular dependence is
of interest. The angles used for the incident and reflected terms are
obtained by

=¢’A"4‘g="+9-¢g

and

T = =
§ _q‘A‘fl;lg—ﬂ'"‘e"'qlg)

where the superscripts i and r replace the signs {¥) in Appendix A to
indicate that the »'s are for the incident and reflected terms. By the
property of symmetry, the diffracted waves from wedge B can be obtained
by replacing 9 in Eq. (4) by (-d) as
-1
,e\?

(5) Dpg(f) = Dpg(-8)= Kpy HKAZ - C“( > /j"

-1
‘{KAZ - CO8 ﬂ.ﬂﬁ} }
na

NB T DA

Kp1=K,;» and Kpp =K, 5.




Only portions of the two diffracted waves obtained in Eqs. (4) and (5)
propagate directly to the far field. These portions are schematically
shown as solid-curved wavefronts in Figs, 3 and 4; the portions of the
waves reflected by horn walls are shown in dotted curves, Before dis-
cussirg reflections of the waves, it is first convenient to treat inter-
actions between A and B. At the boundary $4 = #/2 or 6= -w/2, the
diffracted wave from A illuminates B with an intensity Dgg(0= -n/2).
Similarly, A is illumirated by B by Dpg(6=+n/2). Using Egs. {4) and
(5), the coupling coefficient between A and B is obtained as

-7 m
N s )

=K rK o L T.y -t
Al tAZ-CSnA 2 g
I fn -1

- {KAZ - cos;; 5 +¢g)} .

Assuming that the diffractions from A and B are the same as those
obtained by illuminating each other with uniform waves of intensity
ct ARy the diffracted waves consequently induced at A and B may be
obtained from Eqs. (A-3} as

r 1 2n
0 Diap (8) = Ciyp LVB("“"' z*t o “A) " VB (“°' Zz “A)}
DbA(B) = D'AB(‘B) ]
and
.’.'2_ + 0
.i, 1‘ — - v -
¢ap “V¥at 3 ELIA
2

in Eq. (7) the incident angle from B to A is equal to n/2, and again the
property of symmetry i3 used. The solutions in Eqs. (7) are 2nd.order
giffractions which produce 3¥d_,yrder diffractions at A and B, The 27d.
order coupling coefficient can be obtained as




(8) D'

9:‘.—3. = t ‘21
AB( z) DBAG 2)

C'AB[VB(aO’ 0, nA) - vB (ao, T, nA)}

- |
“BACapa’

where the triple~subscript is used to indicate that wedge A is illuminaied
by B at which the diffracted waves are induced by C'BA from A, U the
process of interactions between A and B is indefinitely continued, the
resultant coupling coefficient can be obtained in closed form as

C'AB
(9) CAB::C T e
BA 1-Cppa

which is evaluated by using Eqs. (6} and (b). As a result, the total
diffracted waves resulting from the interactions have the same form of
golutions as in Eq. (7), with C'yp replaced by CaB -

Combination of the dif{racted waves in Eqs. (4) and (5) and that
caused by the interactions between A and B can finally be written as

{10) NG

DAg + DAB

.3
sty
KAI K - cos 1.._413__?
A2 np J

5 E=1
- fKAZ - cosw} }

[

™ { 3mw,.
+ CAB [VB<aO, ‘2—+01 nA) - VB \ao, —'2"+Un nA)]

~O o) v 0y

and

Dg(0) = Dp(-9), g+t o029 -vy.,




where the regions are specified so that the portions of waves reflected
by horn walls are excluded, The values of Dy and D_ are set to zero
outside the specified regions, The incidence angle g oo S8 be deter-
mined from Fig. 4 as

c
- o
(11) Yoo = 8in7H =2,
o
c, = ag cos by,
and
1
Py = (a.‘._,Z + sz ¥ ZaopH sin GH)Z .

The two resultant diffracted waves from A and B have been sum-
marized in Egqs. {10) in which the regions are specified for only those
rayse which propagate directly to the far field, Since the solutions are
symmetrical with respect to 9= 0, the portions of the waves in the
regions (-w/2 < 6<- (81 + {i50) for A and m/2 > 0> (8 + Yy0) for B)
reflected by the horn walls can be described similar to the methods in
Appendix B. Using the property of symmetry and referring to Fig. 4,
the images formed in the lower wall BG can be described in general,
as in Eq. (B-8), by replacing 6in DA in Eqs. (10) by -(2ifyy + 6):

(12) I8 = (-1)! [Dp(e = -2i8y - 8]

where the factors (-1)1 are used for each image because the electric
field polarization is perpendicular to the plane of study. The number of
images formed is determined by the horn geometry., In Figs, 3 and 4,
the cylindrical wavefronts are drawn in order to emphasize the dividing
regions for the images. For a horn with small 8 and long ppy, the total
extent of the region for each image may generally be expressed as

U3) = 28 g g BT L3 e

where

16




3
3

(14) . =sint l
Pi , i=20,1,2 == ;
c; =aj cos(itl)by

- ai-l cOS \}H + ao cos iUy, = 1,2, 3, -

W
o
t

and

i

4
Pi [ai‘ + sz + 2a; py sin(i+l)0H] 2,4i=0,1,2,--- .

The notations are indicated in Fig. 4 in which §,; are the incident angles
of edge F from various images. Since the waves from A and B are re-
flected by the hcrn walls only in the region, _/A_B__F = [BAG=1/2 - Oy
- ¢ __as shown in Fig. 4, the sum of image regions should not exceed

. 00 . . :
thie value., This criterion is used here to determine the number of
images; i. e.,

L2901 - o0 + Wo1] + {201 - Yo + Yoz +--- (28 - ¥o(i-1) + ¥oil
f.% - Uy - ¥y,
or

i+1)u r
(21+l)1H+q,oi_<_2 .

In other words, the number of images is equal to the integer h which
satisfies the condition

(15) (2ht1)0g + ¢y < % ,

where the values of the §,; are computed by Eqs. {14). When a set of Jy;,
ag and pyy is given, the number of images formed in each horn wall by A
and B can be determined by Eq. (15). From this information, the image-
waves from the horn walls can be written from Eqs. (10) and {(12) as

- g-2i6-0 )-‘

(16) ILi(e) = (-l)i Kal E(AZ - COS
nA

N4
+§_ -210yy -0
) (KA2'°°S g 2% )
nA B

11




( ] . .. Y
+ Cap {VB (ao- ~ - 2108, “A) - vB (%» 3 - 2186 “A) J ,

Yo(i-1) “B <0< g + Oy

and

Igi(® = -8, - (oo - %) > 02 - (boi + Oy)
i=<1,2,3,--- h,

where the property of symmetry is used to obtain the image waves from
the upper wall. Each term of the image waves in Eqs. {16) is valid only
in the properly defined region, otherwise it is identically zero, If

[@h+ 18+ donl <3,

the regions of the last terms, i = h in Eq. (16}, should be modified as

(17) Yo(h-1)- Op< 82 -g- =¥o(h-~1) ~ (2h-1)8. from the lower-wall,

and

-(¢o(h-l)'eli) >8> - [% "pc(h-l) - (Zh'l)ol.l} » from the upper-wall,

Examples of Eqs. (16) and (17) for h=2 may be obtained from Fig. 4.

We have so far described the diffracted waves from A and B, both
directly to the far field by Egs. (10) and indirectly reflected to the far
field by Eqs. (16) and {17), When these waves propagate outward, wedgzs
F and G are illuminated and diffracted waves are induced to contribute to
the far field, Using Fig, 4 as an example, wedge ¥ is illuminated by B
and image 1 but not by image 2. In general, if there are h images formed
in the lower wall, wedge F would be illuminated by B and (h-1) images
in the directions 8= 6 + Y, and 9= Oy + Y;, with i{=1,2 ---(h-1). If the
equality in Eq. (15) holds, then F would also be illuminated by the hth.
image in the direction 6 = 6y + Yo, but the intensity is equal to zero. To
evaluate coupling coefficients in the mentioned directions, Eqs. (10) can
first be used to obtain

12




Crp = Dpit = oy ¥ ¥ool

4

Kal {-’lKAz-COs (“‘q’oo“ti’g-OH)} -1

] na

{KAz-cos (’"4’0:;‘%'0}1)!{ ) }

+ Cap !VB (ao' %-"poo'UH' nA) -V ( o"“ q’oo"‘}H )] s

[H]

which can be seen to be identical to Cgj shown below with i = 0, There-
fore, coupling coefficients to F can be written from Eq. (16) in general
as

(18) CFri = Ip v = o + gg5)
me YoWos- (210 )
= ( 1) iKAl {(KAZ - CO8 gnA01 )

- (KAz-COs 11u"q‘g"l"Oi“(Zi’*'l)e'l-l )}-l
nA

J.

+ CAB {VB (ao, % "poi'(Z'H’l)J}-Ia nA) - VB( or .?—1:-4[01-(21-('1)3}1, na)}
-

L v

i= Or 1: 2, ""‘(h‘l)n

where i=0 is included for Crp = CF0. By symmetry, the coupling co-
efficients from the upper wall to wedge G are C; = 11.i(8=-85~Ysi)s
which are identical to Cp; in Eqs. {18), With these coupling coefficients,
the solutions of difiracted waves from F and G can be summarized by
using Eqs. {A-3);

13




-1

{19} Df = E CFi{VB(Pi' 1-B-Yoith, 2) - vBIR, 7- 0446, 2} ],
i=0
D'G = D%('e)v
i

2VEE PEEPEALER (R R NP

and

Q;.i:\pFw}‘poi:(ﬂ-e}i‘fe)'fwoi,

‘where { = (h-1) {s set as the last term because the case for i = h has

Csh = 0. Each of the diffracted waves D'y and D; from F and G illumi-
nates the opposite edge, causing a series of interactions, as is the case
between A and B. In a manrer similar to Eq. (9), the resultant coupling
coefficient between F and G can be obtained as follows:

Cl
B OFG=Car T Igpgr

§ = ' =-1 = D' 9=E
CFG‘DF( z) DG( ;_)

- Som o) afn v

and

CFGF = ¥B(b, 0,2) - vp(b, x - 28y, 2),

where CFGF is the diffraction coefficient between F and G, Using Cgq,

the diffracted waves from F and G resulting from the interactions can
again be obtained by using Eq. {A-3) as

{21) Dpg= CF‘G [VBG‘),%'P&, 2) - VB(b,%E- :’.3}{* 8, 2)] s

DGF = DF‘:“G)ﬁ

iq




z1n N =.,(%_g,\=§ + o,
{cont) : =

and
3w

r n N . 3n -
RV I

where ~pi’ T are obtained from Fig. 4. The total diffractions from F and
G are ther the superposition of Egs, (19) and (21) as

h-1
=/ Cri [vp(p, m-0y-1; 10, 2) - velps T-8 +ig; +0,2))
i=0
f ’.' 31r .
T e
- -2— < T F 8}1
and
Dg = Dgi-9), % > > - (mi9y),

where the regions are specified to exclude the portions of waves reflected
by horn walls in the regions

¢ ¢ _1 a At
-{w-By) <9< 5 for F and (n-8y) > 9>-z fer G.
The portions of the diffracted waves from F and G which are reflected
by the horn walls may be described in a manner identical to the image-

waves in Appendix B, By Eq. (B-38), the image-waves in the lower and
upper horn walls caused by F and G can be obtained from Egs. {22) as

15




(23) Iy (8 = (-1) Dp(6= -2méy - §

‘h-1

= (-1 z Crilvplpi, 7 -4oi-(2m+1)84-6, 2)
{=o

- V(pj, W Hioi~(2m+1)8yy-6, 2)}

+ Cpg {VB(b. 2 -2mey-6, z) - vB(b, 3%’-2(m+1)9,{—9. ?)} .

L3
3 ~(mH1)8y < < 2 - méy

IUm(B) = Imn('e)a - [lzr'~(m+1)6x_l} Z 9?. - [% -mal'l] ;

and
m = 1p z' 3-"--(?-1) ?
where p is the number of images formed in the lower or the upper wall,

provided the walls FB and GA extend to intersect at Q, The value ofi p
is the largest integer satisfying the condition

p<—1’
26y -

If the ratio /26y is not an exact integer, the region defined for the last
image, { = p, should be modified as

(24) %- (m+1)8; < 8< 7~ (2m+1)8yy, from the lower-wall,

and

. [% -(mﬂ)eH] > 02> - [#-(2m+1)8,], from the upper-wall,

in which most of the rays propagate into the guide as in Fig, 5. The
image-waves given in Egs. {23), in general, contribute negligibly to the
total far-field pattern of typical horn antennas, But the contribution for

16




F2=p,
F3:ps
FG=b

Fig. 5. The lower-wall images due to diffracted waves from
wedges A and B.

small horns is not negligible. For very accurate treatment, t-. effecis
of Eqs. (23) may be included, and conseguently their illuminations to
wedges F and G need to be considered to compensate for discontinuities
in Egs. (23),

From the image regions given in Appendix B or Fig., 5, it can be
seen that wedges F and G are illuminated by the lower and uppe: wiils
at

L .
0: i' (E’ - ml}‘g_l)’

17




respectively, for each image. By using Egs. (23) the coupling coeffi-
cients can be obtained as

I'4
(25) CFm = tm (0= -™0%) * Ium (Gz -3t m"H)
-1 ¢
= (-1)™ E Cri iVB (Pi: :21 ~Yoi-(m+1)8y, 2)
g i=0 ’
- vy (Pi‘ % +¢°i-(m+l)eﬁ.2)}
+ Cpglvaib, -mby, 2) - vg(b, v -(m+2)6y, 2)}
= CGm
m=1,2,3-me-- (p-1) .

The value of m is restricted to (p-1) as the highest because the last
image wave i=p does not exist for most horn antennas. The apparent
reason is shown in Fig. 5 in which the diffracted rays giving rise te the
last image actually propagate into the waveguide. In fact, for the small
horn shown, a portion of the second to the last image does noi exist
either., Because of the fact that the diffracted-field intensity is very
small for iow angles of incidencs, the contributions of 1j 1, Ijyn,, and
Cygm for the highest values of m are relatively insignificant, There-
fore, a very satisfactory result can usually be obtained by considering
the contributions only for m =1 to (p-1).

Using CFm in Eqs. (25), the diffracted waves from F and G
illuminated by ¢the image-waves can be obtained as
(26) DFm(6) = Crm l[},B (&n’ % + m8y+9, 2) - VB( s .3_‘.;1~ (m+2)61+6, 2)} s
DGm(® = Dpm(-8) ,
Pm = P(m-1) CO8 9+ b cos mby .,

Pozb’

18




. o U [ - {m+)o ) =¥ 13
[N ST R IS SR
and

. 3 - 2316 -
=27 - (m+2) bt Y,

= 4 \
Ofar = ¥t (3 - (m*18, )

m=1,2,3--- {p-1),

where Fig, 5 can be used as reference for the geometry,

The total diffracted waves from F and G are then the sums of

Dr{v} and DG{Y) in Eqs. (22) and Dppp(v) and Dgm{0 in Eqs. (26)., Using
subscript T to denote the total, they are obtained as

i
W]
]
™
o
c
j
3

(27) (DR =

h-1
)
&

=9

CrilvBlR: m-sg-Yoi+9, 2) - VR, T8y + Yoy + €42)]

=

o+

i
L

. g:l [ 3

w / }
CFm LVB (Pm: '2" +m01d+)r 2) - VB k?m’_zb-{m+2)eﬂ+0' 2)} F

[ L 3n
Crg {VB (b, 5 +3 2) - vB(b, = - 213H+c3, Z}]

~

ta=l
n R
- ES 0K n+ Urp
(D) ¢ = (DR{-O) ’2_' >8> - (n+ 8y},

where Cp;, Cgg, and Cpp, ave given in Eqs, {18), {20) and (25},
respectively,

19




For typical horn antennas, the diffraction process mentioned
above is sufficient to describe the far-field radiation mechanismas,
To obtain the total radiation pattern of the horn antenna one may simply
superimpose the diffracted waves in Egs, (10) and (27) and the corre-
sponding images in Eqs. (16} and {23). It is noted that the images of
Dy, 8nd Dy, in Egs. (26) are not included in Eqs, (23),

Before superimposing these waves to obtain the far-field pattern,
a phase reference needs to be established, If F is taken aa the phase-
refe rence point, then phase-shift factors from A, B, G, and the images
are given by

(28} YFA = Exp. {+2n Py cos ¢i‘A] ;

; i = .
vpp = Exp. (45270, cos ¢, ] YFi‘i:O '
Ypg = EXP [+j2nb ces ol s

YFi = Exp. [-i-j?_'rx';rl cos d);.i] s i=1,2-===h;

Yem = Expe [ti2m gy, cos ok ) s m=1,2,--- (p-1);
vGi = YFit-® YGm = YFm{-9;

¢}£'A:4’A' QH =1r—9H+6;

=m0+ -

H i' i=0,1,2‘---h;

and
A = (- 8 - 1’.-'m+16)
“rm = ¥a - Yom = -+ O (2 tmH%y

=%+m8}{+60 m = 112 bt (P‘l)t
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where the distances py, b, py, and p,, ave all in terms of wavelengths.
The values of §,; are given in Eqgs. (14).

Finally, the radiation pattern of the hern antenna can be obtained
by using Eqgs. (10}, (io}, (23), (27), and (28) as

3

29) 3yl = Dpypa t Deypp * (PRI ¥ (Dglyyeg

(1L vRi + lui YReY i)

e

.’.
MOS)

1

R

) Uim ¥pm t Tym PG Yoml» 0 S0%2m,
m=1

i

where each individual term is valid caly in the properly defined region
and otherwise is set to zero, The phase factors y; and YGm 2% those
of the image waves from the upper wall referred to G. When they are

rnultiplied by yg, the phase reference of the upper wall images is
referred to F.

It has been shown[3] that the radiation pattern in the H-plane of
a horn antenna is not only due to contributions of H-plane radiation
mechanisms, but also to diffracted fields from E-edges. It is assumed
that the horn antenna shown in Fig., 6 has a geometrical-optics field
distribution in the aperture which is constant in the E-plane and cosinu-
soidal from the center to the edges in the H-plane. Taking the upper
horn wall for illustration, a ray initiated from an assumed source in
the waveguide strikes the E-edge with an incident angle B shown. The
incident ray-intensity is cosinusoidal from the center along the edge,
therefore, if the intensity is assumed to be unity when § = n/2, the
illumination intensity of the incident ray as a function of 9 can be written
as

(30) X(6) = cos [-121 tan € cot GH} R -8y <0<y,

where 8 is in the H-plane. The diffracted rays from the edge form a
cone and have a solution involving sin B 7] as
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Fig. 6. Diffracted fields from E-plane.




JT- Q4,2
(31) p=xig (BPET- Gptand)

sin p

where the angle @ is referred to the principal E-plane of the antennas.
The angle B in terms of 8is

"

(32) p

w
r_.e
2 L 2

Because only two of the diffracted rays shown in Fig. 6 lie in the H-
plane, the v factors of Eq. (31) are giver by

(33) vglpg sec 6, m-Qg,2), inthe forward direction,
and
VB(PE !sec 9!, 2m - Qs 2)y in the backward direction,

where pp is the hornlength in the principal E-plane, Combtining Eqs.
(30) to (33), the diffracted fields contribution to the H-plane in the for-

ward and backward directions are written as

cos{% tan 9 cot GH]

(34) D = — [VB(pE sec §, v~ .21, 'eﬂﬁ ef. eH ’
and
cos Fl tan 8 cot BH}
D; = Z [vB(p [sec 9',21:-(1 7_)}. "’eH< 8< w+BH,
- |cos 8| E E -

where the minus sign is introduced for D; to take into account the three-~
dimensional polarization properties of tha contributions from the E-
edges. Also taking into account the diffracted fields from th: lewer edge
of the horn, the total contribution to the principal H-plane can be written
aa

ID‘ Yrpy » - 6y <028,

D;YFD" ’w- e}iﬁeﬁ'+6H

-

(35) UR(8) = 2u*(0)

where the factor u*(0) is the actual geometrical-opticy field intensiy
instead of the unit intensity assumed earlier in Eq. {30). The valuz of
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u*(o) can be obtained, within the accuracy of the solution in Eq. (29),
in the direction of 8= 0 as

(3€) u*(0) = 2 I-DA(O)'/FA(O) + ? Tpilodypi(O)  yop
i=l

and

YSF = Exp. [jZ“PSF cos OH]'

wherxe the factor 2 results from contributions from both walls, The
sum of the terms in the bracket has the phase-reference at edge F.
The factor ygp is used to refer u*(0) F ack to the assumed sourse S
{the intersection of the two Walls perp .ndicular to E-fields) shown in
Fig. 6, so that Eq. (35) is appropriate. The two phase factors in Eq.
(35) are used to refer the diffracted ravs to point F. They can be ob-
tained by assuming, for convenience of computation, that FS # FQ for
typical horns. Under this assumption and making use of Figs. 4 and
6, the phase-factors can be obtained as

(37) YFD; b -er.ef_aH
= . |= — +
YFD, Exp [jZn'{Z (Pyy pg) cos 84 tane} sin B] . 1!-6H< 6< w4 GH
where
.o
Pe" 2sing;

If the contributions from the E-edges given in Eq. (25) are con-
sidered in the H-plane radiation pattern given in Egq. (29), the total
radiation pattern in the principal H-plane may now be written as

(38) uT(6) = ugd6) + Up(s) .

To compute the radiation pattern , only the upper half-plane (0 < 95 x)
needs to be considered. Numerical computations will be discussed in the
next section and compared with experimental results.
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1Iv. COMPUTED RESULTS COMPARED
WITH MEASURED PATTERNS

The horn antenna used in the experimental measurements is shown
in Fig. 7a, in which the waveguide feeding the horn is finite in length and
to which is attached an attenuator and a detector. It can be observed
from the figure that any possible reflection and diffraction taking place
on the surface of the guide and associated structure are not considered
in the solutions given in Eqs. (29) and (35) or Eq. (3%). Since the guide
is finite in length and the diffracted waves from F and G illumirate A
and B with zero intensity, the solutions in Eq. (38) can be applied to
the approximate model shown in Fig. 7b. In other words, as far as H-
plane-diffracted fields are ccncerned, the total pattern contributed by

\\
{a) 6
For-Fieild

Py
Fé__?' L =
6,48

! yem-

{b}

Fig. 7. Horn antenna {a} used ir measurement and the
Model (b) used in computation.
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the diffracted ray from edge F and reilected by the guide surface shown
in Fig. 7a is replaced by that directly giffracted from G. Using this
approximate model, the total far-field pattern in the region 0<6< «
can be computed by Eq. (38) as

ug(d) = up(6) + ug(Y), 0<e< m,
where uy(6} is modified from Eg. {29) as

uH(® * Daypa + Dpypp + (Dp)r + (Pg)rypg
h

* } LT vFs + Iy ypa Vel
i=1

-1
+ 3 [ILmYGmYFG] ’
m=i

(39) Da(6) : 0< 0< 8,

L Fgqs. (10),

Dp(8) : 0<8< Oy + ¢

DF(f) : 0< €<= A
0<0< = , Eqs. (22),

Dg(9) :
-(w+0y) <8< -x

14(0) : 0<6< 8 + g l
v
2

Eqs. (16),
Tysf®) : 02 0% 8y - by

I m(® @ 5 -(m+l)f < 8<

- mﬁ}{ s Xqs. (23},

and Ug(9) is modified from Eq. {35) as

(40) up(® = uw(o)[2{Ds ypp, * D:¥FpD,} ] ;
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3
(40) Dy(8) 0<6< By |

{cont) ;

Eqgs. (34) .
D,{6) "'inf_ 0< n j

The phase-factors in Eqs. (39} and (40) can be obtained from Eqs. (28)
and (37), respectively.

Computations of up{V) and up(t) arec simple algebraic superpositions
if the function vy can be computed. The diffraction terms vy of Da, Dp,
I14s and I are computed by making use of Eq. (A-1lj. The vy of the
rest of the terms in Eqs. (39) and (40) are computed by Eq. (A-10)}.

The pattern computed for the parameters shown in Fig. 8 is plotted for

|
20 log 1“T<a)*_
b0} ]

For convenience of comparison, the computed pattern is shown
displaced (+5) db above the measured pattern in Fig. 8. Excellent
agreement is observed in the region 0 € U< 90°, 1In the region 90" < 8
< 180° - 61! » the radiation intensity is balow {-50)db. Therefore, the
experimental pattern cannot be accurately measured. In the backlobe
region, 180° - 8,;< 8< 180°, two computed patterns are shown. The
dotted pattern is obtained by neglecting the contribution UE{(6) irom E-
edges. The calculated pattern including UE(6) gives good agreement
with the measured pattern,

V. CONCLUSIONS

Diffraction theory in conjunction with the method of images has
been demonstrated to be a successful technique to compute the principal
H-plane pattern of a horn antenna. The interactions between wedges A
and B at the horn throat are successfully described by using a new form
of diffraction function vg. This new form of vy is the series formula-
tion in terms of cylindrical wave functions given in Eq. (A-9). The
convergence of this series allows practical and accurate computation
of vg for typical horn antennas.

The contribution UE(8)} from the E-edges has been shown to be the
primary radiation in the backlobe region. In the main-lobe region, the
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contribution of Ug{ 4 is unnc.iciably smezll as compared to that of uy(y),
The experimental results confirming the above conclusions have been
given in Ref. 3.

A corrugated horn[ o] of dimensions similar to those given in Fig.
& has been discovered to have an E-plane pattern almost identical to
that of H-plane in the figure. Therefore, by prinziples of duality, the
discovery suggests that the E-plane pattern of a corrugated horn can be
solved by treating the corrugated surfaces as magnetic conductors,

It may finally be concluded that the radiation mechanisms of horn
antennas described by diffraction theory are new points of views on
electromagnetic radiation and propagation, Proper use of the theory
ensures solutions for most two-dimensional problems involving per-
fectly conducting wedges.
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APPENDIX A
REVIEW OF DIFFRACTION THEORY

The two-dimensional problem of the electromagnetic field in
the neighborhood of a cenducting wedge illuminated by a uniform plane
wave was first solved by Sommerfeld[9]. The solution for a conducting
half-plane (zero wedyg: angle) was formulated in terms of the Fresnel
integral. Subsequently, Paulifl0] formulated the solution for wedges
of arbitrary angles in an asymptotic series in which the dominant term
is the Freanel integral, The higher-order terms in Pauli's solution
become identically zero for zero wedge angle. Therefore, Pauli's
solution is used here for the general case.

Figure A-l shows the geomatry of the wedge used by Paul{ to
formulate the sclution of field intensity at P(r, §) caused by pliinc-wave
illumination, By reciprocity, if the same wedge of a perfectly conduct-
ing surface 18 illuminated by a uniform cylindrical wave from S shown
in Fig. A-lb, the far-field intensity can be written from Pauli's sclution
as

(A-1)  v=vip,¢t.n) tvip, ¢, n),

V+*v

4’*:4)-?4;0. and

28
n=2.-_2

™

H

where the terms vt represent the incident and the reflected fields,
respectively. The sum (vt + v-) applies when S is a magnetic line source.
and the difference (vt - v~) applies if S is an electric line source. The
incident and the reflected fields are composed of geometrical optics
terms and diffracted terme, as,

vt = (5t + v% .

3¢




(a) illuminated .y a2 uniform plane wave

« P (FAR-FIELD POINT )

(" ° Illuminated by uniform cylincrical wave

Fig. A-i. Geometry of a wedge.
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The geometrical optics terms are given by

(A-2) (v*it = v*(p, o1, n)
Exp| jkp cos(of + 2wnN}], -v< ¢i +27nnN< w,
0 otherwisge
N=0, ¢, £2 - - - ,

where the periodicity of the functions i{s seen to be 2nn. The diffracted
terms are given by

ta-3) vp? = vi(p, 9%, n)

T

Exp(j-;-) (sin f-) 2 !cos-%—- 1Exp (jkp cos ¢*) -y

n e dr
J* \n 1 P

- Ccos—/-
n

w
cos .

+ { Higher-ordex terms \
negligible for large kp)
and
a=14+cosot.

As (akp ) approaches infinity, i, e., as the line source S recedes to the
infinity, the soclutions in Eq. (32) can be written

Expl-j(3 +kp)l|  stn
(A-4)  vplpot,u) = e -1 -
i H(COSE-COS%)

For N=0 in Eq. (A-2) the geometrical optics terms have discontin-
uities at the shadow boundary (¢* = 7}, and the reflection boundary (¢~ =n},
At these boundaries, the diffracted terms are given as
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-,

1
- 5 Exp.{-jkp) + - - - 0¥ = lim{n -¢)
€ =0
(4-5)  vglpof=mn)= { . :
+3 Exp.(-jkp) + - - - 07 = lim (w+¢)
€ ~0

L

where the higher-order terms are negligible for large (kp) are not
presented. The solutions are essential in ensuring cortinuity at the
boundaries. Since we intentionally make the geometrical optics terms
in Eq. (A-2) defined at the boundaries, ¢~ = +u, the first equation of
Eq. (A-5) should be used to obtain the field intensities at the boundaries
The total {ar-field of the wedge illuminated by a uniform cylindrical

wave shown in Fig. A-1b can now be obtained by using Eqs. (A-2), (A-3),
and (A-5) as

(A-6) ulpadan) = [(vH)T + vgtl + [vF) + vy,

where the reflection terms disappear if the wedge is illuminated by the
source with ¢° = 0. 1If the source is8 an electric line element, the value
of u{p, 9, n) is identically zero for 4;0 =0,

The solutions in Eq. (A-6) are valid only in evaluating the far-field
intensity which is the main concern of present problem, The diffracted
near-field intensitizs of a conducting half-plane, i.e., n =2, have been
solved by Nomura{lll and used by Ohka for dipole source illumination,
Since this solution is in a general form, it can easily serve to illustrate
principles of reciprocity. To generalize the solution further, the dif-
fracted near-fields of a wedge illuminated by a line source have been
written by Dybdal[l2] in a form as follows:

Ex ~-jk{r+p-b
(A-7) v({r, p,Oi,n) = pI{_JT'(—f £ )] !VB(bo Qi’: n)]
rrp
o TP
b= rtp !

where the vp terms are given in Eq. (A-3} If the field point is in the
far-zone, v{r,p,0", n)is reduced to
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which, with the common factor r~2 Exp[ -jkr] removed, is identical to
Eq. (A-3). I the source point recedes to the far-zone, the solutions in
Eq. (A-7) are reduced to

v(r, Pt@to n) = _E'x—&[\[_—-_lm {VB(I'a 4)*) n)] s
P

which, with the common factor p'% Exp[-jkp] removed, are identical
to the near-field solutions of a wedge illuminated by a uniform plane
wave,

If a wedge has its value of n quite different from 2 ard is illuminated
bv a line source located closer thgn several wavelengths from the wedge,
the higher-order terms of vp(p, 9. n) in Eq. {A-3) should be included to
give accurate results. Instead of evaluating higher-order terms, a more
convenient form of the solution for Jiffracted fields may be obtained from
the series of cylindrical wave functions and can be written as

(A's) VB(P: ¢t. n) = V(P: ¢*n n) - V*(p’ q’t: n),

[ 2 m
vipsot, 5 =% ro(km +2 E () ™ I (kp)cos Dot

m n ‘} ?
m=l, 2., n J

and

. +
. + Exp| jke cos{$¢"42nNw)],
vi(p,¢7,n) = -® <9 +2nNw<w, N=0,4l, t2,....
0, otherwise |,

The gquantities v(p, <b+, n} and v(p, %", n) are the incident and reflected
terms of the total radiation field[13]. The geometrical-optics terms
v¥*(p, ¢, n) and v‘(p »$”»n) are valid only in the defined regions and are
set identically zero otherwise. Writing vy explicitly as a function of
p, ¢, and n, we have
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1 Tz |
Y 1 _ \ :' +
(A-9)  vplp,etin) =2 |Totkp) 42 ) (527 J kel co8 (o7 )J
‘-— ——
L =1, 2 B

Exp[jkp cos(u? + 2nNm)], -n < oF + 2nNw < 7,
- N:=0, +1, 42 ...~
0, otherwise,

It is more convenient to use the Bessel function form to compute vg
when p is small, because in this case the Bessel functions converge
rapidly. The angles ‘.{t in vp may be replaced by oh T to indicate more
B
clearly that they are the field angles for incident and reflected terms,
respectively. The diffraction terms vg(p,y,n) are calculated in two
ways, depending on the values of p and n. For a wedge of zero wedge
angle (n = 2) or for p > 1.5\, the Fresnel integral form of vg in Eq.
(A-3) ie used without the higher-order terms and is denoted by

Exp(.)%) (sm_) Z% cos -‘;—- ‘Exp()kp cos o)

!' n " cpt
COS8 — - CO8 ——
n n

-jf
e dar
akp

For cases in which p € 1,5\ and n # 2, the series form of vy in Eq. (A-9)
involving Bessel functions is employed and is denoted by

(A-10)  gipot,n) =

a=14cos¢>* .

o

| 15 m
(A-11) v (gq;t.n t J (kp) + 2 E (J)n Jn_l(kp) cos %(Q)t)
L m=1, 2. . Y

Explikp cos(6? 4 2nNm], -w<of + 2nNm<w
- N=0, +1, $2;~~-=~
0, otherwise,

where the series is summed for m/n < 15 because the Bessel functions of
order higher than 15 are vanishingly small{l14] for p <15\,
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APPENDIX B
FAR-FIELD WAVES FROM THE IMAGES
OF LINE SOURCES

Consider line sources parallel to perfectly conducting plane
walls. The problem in this Appendix is to obtain the far-field intensity
of the image waves from the walls. The problem is a two-dimensional
one and the line sources can be either magnetic or electric line sources,

First, a directional line source is shown at point S in Fig. B-1.
If a semi-infinite conducting wall is placed with an angle 8, with respect
to the horizontal reference axis, the image of th line source is formed
at point 1, The line source radiates a directional cylindrical wave to the

HALF-PLANE WALL

Fig. B-1. Geometry of a line scurce and its image.

far-field and it is designated as v(6). In the presence of the wall. v{(9)
is reflected by the wall in the region -(nm + 6,}) < 6< - w/2. The reflected
wave is called the image wave from point 1 and can be described by

(B-1)  L(8) = v(8) = v(-260-9) , - 20, 0< (r-8) ,

]

where the superscript minus sign implies the reflection of v(8). The
total far-field pattern can then be obtained by superposition of the two
waves as
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(B-2) u(0)

vi0) + v(-26, - 8) yq,

and
vs, = Expl-jkp sin (8+ 6,)} ,

where yg, is the local phase-factor of the image referred to point S
and p is the distance between the image and the source as shown in
Fig, B-1. This result is obtained by removing the common factor
R-Z Exp | -jkR], with R referred to S. The plus sign applies for a
magnetic line source, while the minus sign should be used for an
electric line source.

Next, a cornex reflector of 26, is shown in Fig. B-2a. Let there
be only one line source v(6) at A, In the region -{r-6,) < 6< -n/2, the
rays from A are reflected by the lower wall. Only rays in the ray -1
zone {from image -1) are directly reflected to the far-fiecld. The rays
in ray -2 zone are reflected twice while those in ray -3 zone are re-
flected three times inside the reflector. Consequently, three image
waves are formed in three distinct regions. The first image wave can
be written similar to Eq. {B-1) from Fig, B-2a as

(B-3)  w1"(®) = v(-28,-9) , 3 - 28,2022 -6;,

which is obtained by replacing the 8 of v(6} by (-26, - 8), The second
irnage is formed in the upper wail. This image wave can be obtained
by replacing the 8 of v;~(6) by (+26, - 6} as

(B-4)  v&T(8) = v(-4% + 6), - 300202 - (5 - 26) .

Again replacing the 8 of the above expression by (-26, - 9, the third
image wave can be obtained as

bl -
vy~ (6) = v(-69, - 6), 3 - 46, <0< - 78,

This process can be used for any number of images. The number of
images is equal to the number of ray zones determined by the highest
integer h such that h < v/28,, Construction of the images in Fig. B-2a can
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{b} Images of lower wall due to two symmetrical line sources

-1

Fig, B-2. Geometry of a corner reflector 1;- >28,> 7 -
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be extended to conclude that all the odd-numbered images are formed
in the lower wall, while the even-numbered images are in the upper
wall., In general, the image waves can be written

) v(-2i6, - ), 12’- -(i+1)6, < es-’z’- - 0, for i odd
(B-5) viT(0) = . ,
v(-2i8 + 8), -[5-(i+1)8;] > 8> - [5-i9,] for i even,

i=1,2,3- -~ (h-1),

If the ratio of  to 26, is not exactly an integer, the valid region of the
last image should be modified as

v(-2h9-6), = -(h+1)8, < 8 w-(2h+1)%  h odd
(B-6) vh~{6) =
v(-2h9,+9), -{.’é -(b+1)85] > 8> -[ % -(2h#1)3] h even .

The value of 28, in Fig. B-2 is larger than n/4 but smaller than n/2,
Therefore h is equa. to 3 and the last image is defined by Eq. (B-6)
for h odd,

Figure B.2b shows two symmetrical line sources at A and B from
which far-field waves v(6) and v(-6}, respectively, are radiated. The
images of the source at A are identical to those in Fig. B-2. Because
of the symmetrical properties of the assumed line sources and the geo-
metry of the reflector, the images resulting from the source at B are
symmetrical to those of A, Consequently, equal numbers of symmetri-
cal images are formed in both walls of the reflector. Making use of this
syrametry, the image waves excited by v(-8) from B can be obtained
similar to Eq. (B-5) as

) v(-2i8,+6), -{12'.-(i+1)9°] > ez-[.;..ieo] i odd
{B-7) vi(-8) =
w
v{-2i65-~9), 53 -(1+1)8, < 85.321 -i6, i even,

i=1,2,3--- (h-1}.

In case the ratio v to 2Y, is not an integer, the last image wave has
its defined region as in Eq. (B-6) by interchanging h odd and h even,
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icates that ail image waves
from the lower wall are combinations of v{ (6} with i odd and vi {-6)
with 1 even, The other set of cembinations gives the image waves
from the upper wall. To summarize, the image waves from both walls

of the reflector are designated by (I; ); and (I} as follows:

(B-8) {(Ip) = v (8) = v(-2i8,-8) , %-(m)eo < ef_%-s.eo, lower wall:
gl = v7(<0) = v(-2i06+0) , -[F-i1+1)8] > 0> -[ 3.-i8,], upper wall;

i=1,2,3,--- h.
For the ratio of m to 20, not an integer, modifications for i = h are

(B-9) (IL)h = v(-2h86-8),  Z-(h#1)8 < 0 -(2h+1)8;
2nd

(Iyly, = v(-2h8,+6), -[g.-(hu)aojz 6> -[n-(2h+1)8,] .

In Fig. B-2b, three images in the lower wall are shown, Their far-field
intensities can be obtained by setting h = 3 in Eqs. (B-8) and (B-9).

Because of symmetry, only the upper-half region 0 < 8< v needs
to be considered for the radiation pattern of the reflector antenna, In
this region, the contributions are from the sources at A and B and the
images in the Jower wall. Contributions from the last image in the
upper wall are possible, if the ratio of # to 29, is not an integer. Super-
position of all these contri'.tions gives the total far-field u(6) as

h
(B-10)  u(8) = v(8) + [v(-9)yppg + z(ﬂ)‘ [w(-2i8,-9)]y a4

i=1

h
+(21) [vi-20849) ]y o 5 ypy, -
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where (+1)' preceding the image terms are used for magnetic line sources
i P

and (-1} are used for electric line sources. The phase factors are

introduced by taking A as phase-reference:

(B-11)  y,p = Exp [-jkp, sin 6],
= Exp [-jkp; sin (i0,46)] ,

ypp = Exp [-jkpy sin(h0,-0)] ,

AB, and

0
(o]
1

©
i
L

= P;_1 cos b, +p, cos {i%,).

The above expressions can be obtained by considering the geometry of
Fig. B-2. It is noted that each term in Egs. {B-10} and (B-11) is set
zero outside its defined region,
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